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Abstract

The motion of a gyrostat, regarded as a rigid body, in a circular Kepler orbit in a central Newtonian force field is investigated in a
limited formulation. A uniformly rotating statically and dynamically balanced flywheel is situated in the rigid body. A uniform elastic
element, which, during the motion of the system, is subjected to small deformations, is rigidly connected to the rigid body-gyrostat
body. The problem is discretized without truncating the corresponding infinite series, based on a modal analysis or using a certain
specified system of functions, for example, of the assumed forms of the oscillations, which depend on the spatial coordinates and
which satisfy appropriate boundary-value problems of the linear theory of elasticity. The elastic element is specified in more detail
(a rod, plate, etc.), as well as its mass and stiffness characteristics and the form of the fastening, and the choice of the system of
functions is determined. Non-trivial relative equilibria of the system (the state of rest with respect to an orbital system of coordinates
when the elastic element is deformed) is sought approximately on the basis of a converging iteration method, described previously.
It is shown, using Routh’s theorem, that by an appropriate choice of the gyrostatic moment and when certain conditions, imposed
on the system parameters are satisfied, one can stabilize these equilibria (ensure that they are stable).
© 2006 Elsevier Ltd. All rights reserved.

It is well known that the stabilization of a spacecraft in an orbit requires the least amount of energy expenditure
when it is stabilized in one of possible positions of relative equilibrium. This fact governs the importance of problems
related to finding relative equilibria and investigating the conditions for them to be stable. The widely used model of
an actual spacecraft is a gyrostat, which is a rigid body with statically and dynamically balanced flywheels situated in
it, with different forms of elastic elements connected to it. The presence of trivial relative equilibria of the apparatus
– states of rest with respect to an orbital system of coordinates for undeformed elements, is verified by substituting
into the equilibrium equations zero values of the variables of the problem, which define the deformation, and is an
exceptional case. Published results of research are mainly devoted to investigating the stability of a gyrostat with elastic
elements in such an equilibrium (see, for example, Ref. 1).

In more general cases it is necessary to be able to find non-trivial relative equilibria, at least approximately (we
are dealing here with numerical modelling), and to investigate the conditions for them to be stable, which will depend
on the equilibria obtained. In such research, discretization of the problem,2 by which we mean representation of the
displacement vector of an arbitrary point of an elastic section of the system as a result of deformation in the form of
an infinite series in a certain specified system of functions, which depend on the spatial coordinates with unknown
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coefficients which depend on time, becomes necessary, since it is determined by modern analytical methods of solving
boundary-value problems of partial differential equations (Fourier’s method, the Rayleigh-Ritz method, etc.). As a rule,
after discretization an a priori reduction of the problem is carried out: in the infinite series indicated a finite number
of terms is retained from the very beginning. The problems of finding non-trivial equilibria and investigating their
stability has thereby been reduced to the same problems but for a mechanical system with a finite number of degrees
of freedom (see, for example, Ref. 3).

Such a procedure, although it was constrained and determined by existing methods of investigating such problems,
has often been criticised (Ref. 4, p. 120), since it did not give explicit criteria for choosing the final number of terms
of the infinite series, retained on truncation, and if the truncation was not carried out, it did not give explicit criteria
for the positive definiteness of the corresponding quadratic form of an infinite number of variables.

In this paper, using discretization of the problem and without truncation of the corresponding infinite series based
on Routh’s theorem,5,6 we investigate the possibility of stabilizing non-trivial equilibria about an orbital system
of coordinates of the system considered when it moves in a circular Kepler orbit in a central Newtonian field of
attractive forces by choosing the gyrostatic moment and satisfying certain conditions, imposed on the other system
parameters.

It should be noted that the motion in a circular Kepler orbit of a gyrostat with a uniform rectilinear elastic rod, the
axis of which, in its natural state, is situated in some principal central plane of inertia of the gyrostat was considered
previously in Ref.7 in the same force field as considered here and with similar assumptions in a limited formulation;
in this case it was possible to obtain exact analytical expressions defining two single-parameter families of non-trivial
equilibrium uniaxial orientations about the attracting centre of the gyrostat with an elastic rod and the conditions for
them to be stable. In that paper, general speaking, it turned out that one could only approximately seek the equilibria
of the system about an orbital system of coordinates but in turn it was possible to obtain the previously unknown exact
sufficient conditions for them to be stable. In both investigations, although touching on an investigation of different
steady motions of a gyrostat with different elastic elements, the discretization of the problem without a priori truncation
of the corresponding infinite series and finding and investigating the stability of the steady motions of a mechanical
system with a denumerable number of degrees of freedom based on Routh’s theorem, which were imposed within the
framework of the direct Lyapunov method, were characteristic features.

1. Formulation of the problem

1.1. Non-trivial relative equilibria

Suppose that, in the body of the gyrostat, which is modelled by a rigid body containing a uniformly rotating statically
and dynamically balanced flywheel, rigidly fastened along a certain region � with a non-zero measure, there is a uniform
elastic section of proportional shape. During the motion the elastic section experiences small deformations. The system
moves in a central Newtonian attractive force field such that its instantaneous centre of mass O is uniformly displaced
along a Kepler circular orbit around the attracting centre, and � is the orbital angular velocity of the system, where
� = �� and � ≡ |�|. The motion of the system is considered in a limited formulation.8

We will introduce the following right rectangular Cartesian axes of coordinates: an orbital system of coordinates
Oyk (k = 1, 2, 3) with a pole at the instantaneous centre of mass of the system and unit vectors of the axes �, � and �
respectively; the unit vector � is directed along the normal to the orbital plane, � is directed along the radius vector of
the instantaneous centre of mass with respect to the attracting centre, the trihedron O1xk(k = 1, 2, 3) with unit vectors
of the axes ik is rigidly connected to the body of the gyrostat, O1 is the centre of mass of the undeformed system, while
the coordinate axes coincide with its principal central axes of inertia. Suppose � is the angular velocity of the coupled
system of coordinates O1xk with respect to the orbital system of coordinates, v2 is the region occupied by points of the
undeformed elastic element, v1 is the region of points of the gyrostat, v = v1 + v2; m1 is the mass of the gyrostat, m2 is
the mass of the elastic section, � is the density of the masses and m = m1 + m2.

The radius vector with respect to the centre of mass O of an arbitrary point of the system, defined before deformation
with respect to the point O1 by the vector r, after deformation will be given by the expression (r + u(t, r) − r0), where
u(t, r) is the elastic displacement vector, r0 = m−1

∫
�2

�u(t, r)d� is the radius vector of the instantaneous centre of
mass O with respect to O1 and u(t, r) = 0 when r ∈ υ1. Henceforth we will neglect the quantity r0, i.e. the points O1
and O coincide.
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We will formulate propositions for which further discussion will be carried out. (Everywhere henceforth, unless
otherwise stated, the subscripts n, m and p take values 1, 2, . . .; summation over a subscript is carried out from unity
to infinity, and integration is carried out over the region υ.)

1◦. We will represent the elastic displacement vector as follows:

(1.1)

where the unknown quantities q̃n(t) must be regarded as Lagrangian coordinates, which define the deformation of
the elastic section; the specified functions �̃n(r) satisfy certain homogeneous equations of the theory of elasticity, to
be specific, the boundary conditions of the rigid clamping of the elastic element to the surface � and the absence of
distributed forces and moments on its free surface. Moreover, we will assume that the functions �̃n are orthonormalized:

and �̃n(r) = 0 when r ∈ υ1. For example,7 in the case when the elastic element is a rod, we can use Krylov’s beam
functions as �̃n(r).

2◦. The potential energy of elastic deformations is given by the expression

(1.2)

where, in turn, the quantities � are determined using the solutions of the corresponding transcendental equation
(compare with the situation considered previously in Ref. 7). For our further analysis it will be extremely fruitful
to introduce the new variables qn(t) ≡ (c̃nn)1/2q̃n(t) and, in accordance with representation (1.1), the new functions
�n(r) ≡ (c̃nn)−1/2�̃n(r), (�n, �m) = �−2

n �nm. It follows from the natural, physically justified assumption that the
energy of elastic deformations is limited, that q(t) ≡ (q1, q2, . . .) belongs to a Hilbert space l2 of infinite sequences,9

bounded in norm ||q|| ≡ (∑
n|qn|2

)1/2
.

3◦. The potential energy of gravitational forces (apart from a known constant) is given by the expression

(1.3)

where, when expression (1.1) and the formula for qn are taken into account, the inertia tensor of the system with respect
to its centre of mass has the form

Here and henceforth E(E∞) is the identity matrix of dimension 3 × 3 (∞ × ∞), and the colon denotes the diad product
of vectors.

The inertia tensor of the undeformed system I0 (I0 = diag(I1
0 , I2

0 , I3
0 ) is its matrix of the components in the coupled

system of coordinates) and the tensors Jn and Jnm can be written as follows:

where In = [Iij
n ], Inm = [Iij

nm] are symmetrical matrices of the components of the tensors Jn and Jnm in the coupled
system of coordinates.

4◦. The central ellipsoid of inertia of the undeformed system is not a figure of revolution.
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The equations of motion of the system in the case considered, which can be obtained by different methods,2 are
not used here. It is well known that, in addition to the integrals of the direction cosines Ui(i = 1, 2, 3), they allow of a
Jacobi type integral U. We have

(1.4)

where Tr is the kinetic energy of relative motion of the system with a stopped flywheel1 and k is the gyrostatic moment.
When � = 0, q̇(t) ≡ (q̇1, q̇2 . . .) = 0 the quantity Tr vanishes; we have the estimate

The dot denotes a derivative with respect to time.
To find the relative equilibria of the system we will use Routh’s theorem (see also Refs. 10,11). We will introduce a

functional – a combination of the changed potential energy of the system and of the integrals of the direction cosines

where �, �, 	 are undetermined Lagrange multipliers. Equating the first variation of the functional V1 to zero, we
obtain the following system of equations for determining the relative equilibria of the system (here and henceforth
�̂ = 0, ˆ̇q = 0):

(1.5)

(1.6)

(1.7)

We have introduced the following notation

The variables with a hat define the perturbed motion – the relative equilibrium of the system; small perturbations of
the corresponding variables are denoted by ��, �q̇ ≡ (�q̇1, �q̇2, . . .) etc.

To obtain the non-trivial positions of relative equilibrium of the system, which will be determined by the existence
of non-zero solutions of the denumerable system of equations (1.7),12 the gyrostatic moment k must be chosen so
that its projections onto the �, � axes of the orbital system of coordinates is equal to zero, i.e. in Eqs. (1.5) and (1.6)
�̂� = �̂� = 0. The projection of the gyrostatic moment onto the normal to the orbital plane, defined with respect to
the coupled system of coordinates by the direction cosines of the unit vector �̂, remains so far undetermined – the
quantity 	̂ ≡ �̂� is not determined. This can be used to ensure stability of the relative equilibria. A similar situation is
also typical in problems of the stability of the relative equilibria of a gyrostat without an elastic element.

If we assume that non-trivial relative equilibria of the system exist, then, in the projections onto the principal central
axes of inertia of the system (ej(q̂) are the unit vectors of the corresponding axes, j = 1, 2, 3, while the matrix of the
components of the tensor J(q̂) in these axes is diagonal: J = diag(J1

0, J2
0, J3

0)), constructed for this equilibrium, we
will have12

(1.8)
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i.e. in the relative equilibrium the unit vectors �̂ and �̂ are collinear with the unit vectors ej(q̂), while the quantities q̂n

will be found from the equations

(1.9)

Here Jn = [jij
n ], Jnp = [Jij

np], etc. are symmetrical matrices of the components of the corresponding tensors in the {ej}
axes (i, j = 1, 2, 3), i.e. the matrices of the components of the tensors are denoted by the same letters but without being
distinguished by heavy type.

It is extremely difficult to obtain an exact solution of Eqs. (1.5)–(1.7). A method for approximately finding non-trivial
relative equilibria for a system consisting of a rigid body (a gyrostat with a stopped flywheel) and an arbitrary uniform
elastic section was proposed in Ref. 12. It is completely applicable in the case being considered: approximately, in the
form of a power series q̂n, one finds the eigenvalues J

j
0 (q̂) and the eigen unit vectors ei(q̂) of the tensor J(q̂)

(1.10)

Knowing the expressions for ej, the matrix of the transition of P(q̂) from the coupled system of coordinates with
unit vectors {ij} to a system of coordinates with unit vectors {ej(q̂)} can be written as follows:

where the skew-symmetric matrix Pn = [(�ij − 1)Iij
n /(Ii

0 − I
j
0)] and ej(q̂) is the column of components of ej in the

coupled system of coordinates (i, j = 1, 2, 3).
On the basis of the theorem on the conversion of matrices of the components of tensors on changing to another

system of coordinates, we can write Jn = P(q̂)InP
T (q̂), Jnp = PInpPT , etc. Neglecting terms that are non-linear in

q̂n in Eq. (1.9), we obtain the following linearized system for finding q̂n

(1.11)

Here and henceforth k and m are already fixed in according with the choice of l ∈ {1, 2, 3}, l �= k �= m in relations (1.8).
We propose to solve the infinite system of Eq. (1.11) by the reduction method,9 as regards the convergence of which

the corresponding assertion is proved in Ref. 12; in this case, if a normalization is first carried out, the solution of
system (1.11) will belong to the unit sphere in l2, i.e. ||q̂|| ≤ 1.

We will now introduce the infinite matrix

(1.12)

and we will require it to be positive definite

(1.13)

(below, in Section 2, we will present the conditions which ensure that this requirement is satisfied).
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Now the assertion that the reduction method converges, which reduces to the successive solution of “truncated”
equations (1.11) (i.e. when, for fixed N (n = 1, 2, 3, . . . N) summation over p in relations (1.11) is carried out from 1
to N and N → ∞) can be formulated as follows.12

Assertion 1 (.). The reduction method for solving the infinite system of equations (1.11) will be convergent if the
infinite sequence {�−1

n } ∈ l2, condition (1.13) is satisfied and

(1.14)

where the arbitrary quantity 
 ∈ (0, 1).

Note that the series on the right-hand side of inequality (1.14) converges, for example, when {�−1
n } ∈ l2 and this

condition can be satisfied by an appropriate choice of the moments of inertia of the gyrostat itself.

2. The conditions for stabilizing non-trivial relative equilibria of the system

By Routh’s theorem, the requirements imposed on the parameters of the problem and which ensure, when there are
linear constraints which restrict the perturbations, that the second variation �2V1(0) of the functional V1, calculated
for the unperturbed motion will be positive definite on the equilibrium (1.8) and (1.9), will guarantee its stability in
Lyapunov’s sense (taking into account the fact that Tr is positive definite) with respect to the norm for the perturbations

(���� + ||�q̇||2 + ���� + ���� + ||q||2)
1/2

.
Suppose, for convenience, that

We will assume that (w, �q) ∈ l2. The linear constraints, imposed on the perturbations, are obtained from the conditions

(2.1)

The second variation of the functional can be written as follows (see Ref. 13):

(2.2)

where, provided that the tensors and vectors are specified by their own components in the {ei(q̂)} axes,

(2.3)

and the square matrix B consists of six rows bi ≡ bi1, bi2, . . .(i = 1, . . . 6 of infinite length, and their components are

(2.4)

The matrix C is identical with that introduced above (formula (1.12)).
Using the Cauchy inequality, the expressions for the matrices Jn and Jnp of the components of the tensors Jn and Jnp

and the conditions for normalizing the functions �n(r), it can be shown that bi ∈ l2(i = 1, . . ., 6) when {�−1
n } ∈ l2, q̂ ∈ l2.

For the matrix C, defined by formula (1.12), the following assertion has been proved in Ref. 13.
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Assertion 2. The bounded quadratic form of the variables from l2 with matrix C will be positive definite, i.e. condition
(1.13) will be satisfied if the infinite sequence {�−1

n } ∈ l1 and the following inequality is satisfied

(2.5)

Note that we can take as �C from condition (1.13) any quantity which satisfies the inequalities

Suppose the arbitrary quantity � ∈ (0, �C). Expression (2.2) can be represented as follows:

It can be seen that, for �2V1(0) to be positive definite it is sufficient to satisfy the requirements of Assertion 2, which
was a positive definite quadratic form of the variables w with matrix (A − �−2BBT) when the linear constraints (2.1),
imposed on w (Ref. 14) are satisfied.

We will introduce the following quantities

where

Here the components of the infinite rows

It is obvious that di ∈ l2(i = 1, 2, 3), as also the rows b1, . . ., b6.
We can now state an assertion on the stabilization of non-trivial relative equilibria of the system as the conditions

which ensure their stability. Omitting the intermediate, quite clear by lengthy calculations we obtain the following
assertion.

Assertion 3. In order for the non-trivial relative equilibrium of system (1.8), (1.9) to be stable, it is sufficient to satisfy
the following conditions

(2.6)

(2.7)

(2.8)

and simultaneously with the condition (2.8)

(2.9)

Note that all the quantities occurring in expressions (2.6)–(2.9), are finite, while Ji
0(i = 1, 2, 3) are the moments of

inertia about the {ei(q̂)} axes “frozen” in the non-trivial equilibrium of the system. Obviously, the moments of inertia of
the gyrostat occur in these quantities, by an appropriate choice of which we can ensure that condition (2.7) is satisfied.



722 S.V. Chaikin / Journal of Applied Mathematics and Mechanics 70 (2006) 715–722

This can easily be proved if we use as Ji
0(i = 1, 2, 3), for example, representation (1.10) and we make estimates similar

to those made previously in Ref. 7.
Conditions (2.8) and (2.9) can be satisfied by an appropriate choice of the gyrostatic moment, the components of

which in the coupled system of coordinates are obtained using the matrix P(q̂).
Condition (2.6) impose constraints on the stiffness of the elastic element and the properties of the function {�n(r)}.

By increasing the stiffness of the elastic element, the inequality in (2.6) can also be satisfied. For example,7 if the elastic
element of the system is a rod and its flexural deformations correspond to Kirchhoff’s hypotheses, then �2

n = EI�4
n/�,

where �n are the corresponding roots of the equation

(it can be shown that {�−1
n } ∈ l1)12 and EI is the flexural stiffness of the rod. As mentioned earlier the Krylov beam

functions are used as �n(r).
As �1 → ∞ (then dij → 0 (i, j = 1, 2, 3)) relations (2.6)–(2.9) become the well-known conditions for the stability

of relative equilibria of the gyrostat, when the gyrostatic moment is situated on one of the principal central axes of its
ellipsoid of inertia and is directed along the normal to the orbital plane.14

It should be noted that conditions (2.6)–(2.9) are more rigorous than the conditions for stability of the system,
which are “hardened” in a position of relative equilibrium, when we must formally put dij = 0 in them and completely
reject conditions (2.6). The destabilizing effect of elastic elements in problems of the stability of relative equilibria of
complex mechanical systems has been discussed earlier in Refs. 1,2,4,15.
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